图解MobileNetV2中的Bottlenecks MobileNetV2中使用了一种名为Inverted Residuals and Linear Bottlenecks的结构,解决了V1版本中SeprableConv存在的输入层Kernel数量固定的瓶颈。
将TensorFlow的变量格式从NCHW转换为NHWC 将一堆二维张量拼接成三维张量的时候,默认的Chanel维度在首位;然而在TensorFlow中张量的默认Channel维度在末尾。因此有时需要将变量模式从NCHW转换为NHWC以匹配格式。
卷积神经网络中的Separable Convolution 移动端设备的硬件性能限制了神经网络的规模。本文尝试解释一种被称为Separable Convolution的卷积运算方式。它将传统卷积分解为Depthwise Convolution与Pointwise Convolution两部分,有效的减小了参数数量。